
Am. J. Hum. Genet. 68:457–465, 2001

457

Problems in the Definition, Interpretation, and Evaluation of Genetic
Heterogeneity
Alice S. Whittemore and Jerry Halpern
Stanford University School of Medicine, Department of Health Research and Policy, Stanford

Suppose that we wish to classify families with multiple cases of disease into one of three categories: those that
segregate mutations of a gene of interest, those which segregate mutations of other genes, and those whose disease
is due to nonhereditary factors or chance. Among families in the first two categories (the hereditary families), we
wish to estimate the proportion, p, of families that segregate mutations of the gene of interest. Although this
proportion is a commonly accepted concept, it is well defined only with an unambiguous definition of “family.”
Even then, extraneous factors such as family sizes and structures can cause p to vary across different populations
and, within a population, to be estimated differently by different studies. Restrictive assumptions about the disease
are needed, in order to avoid this undesirable variation. The assumptions require that mutations of all disease-
causing genes (i) have no effect on family size, (ii) have very low frequencies, and (iii) have penetrances that satisfy
certain constraints. Despite the unverifiability of these assumptions, linkage studies often invoke them to estimate
p, using the admixture likelihood introduced by Smith and discussed by Ott. We argue against this common practice,
because (1) it also requires the stronger assumption of equal penetrances for all etiologically relevant genes; (2)
even if all assumptions are met, estimates of p are sensitive to misspecification of the unknown phenocopy rate;
(3) even if all the necessary assumptions are met and the phenocopy rate is correctly specified, estimates of p that
are obtained by linkage programs such as HOMOG and GENEHUNTER are based on the wrong likelihood and
therefore are biased in the presence of phenocopies. We show how to correct these estimates; but, nevertheless, we
do not recommend the use of parametric heterogeneity models in linkage analysis, even merely as a tool for increasing
the statistical power to detect linkage. This is because the assumptions required by these models cannot be verified,
and their violation could actually decrease power. Instead, we suggest that estimation of p be postponed until the
relevant genes have been identified. Then their frequencies and penetrances can be estimated on the basis of
population-based samples and can be used to obtain more-robust estimates of p for specific populations.

Introduction

For a given hereditary disease, we need to know whether
some families segregate a disease-causing mutation of
one gene whereas other families segregate mutations of
other genes—or whether all hereditary cases of the dis-
ease are due to mutations of a single gene. In the case
of multiple genes, we also need to know the contribution
of each gene to the total hereditary-disease burden.

However, there are difficulties in the definition and
interpretation of the proportion, p, of hereditary fam-
ilies that segregate mutations of a particular gene. (We
call a family with multiple cases of disease hereditary
if its disease is due to heritable genetic mutations.) Spe-
cifically, for a population of interest, “family” must be
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defined in a way that permits enumeration of the fam-
ilies in that population; for example, the definition that
allows both nuclear families (parents and at least one
child) and two-generation families (parents, children
and their spouses, and grandchildren) would have to
avoid double counting of the nuclear families within the
two-generation families. Even then, there are problems
in the interpretation of p. One problem is that the prob-
ability that a family segregates a mutation of the gene
of interest depends on the family’s pedigree structure
and phenotype. It depends on pedigree structure
through the number of founders: families with many
founders are more likely to segregate mutations than
are families with just two founders. It also could depend
on pedigree structure through the number of nonfoun-
ders, if the mutation affects fertility. The probability of
segregation of a mutation depends on family phenotype:
when the disease-causing genes have different pene-
trances, hereditary families with few affected members
are more likely to segregate mutations of the less pen-
etrant genes than are families with many affected mem-
bers. Similarly, for quantitative traits, families with high
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mean values of the trait may segregate mutations of
genes that are different than those in families with lower
mean values segregate mutations. Thus, any measure of
heterogeneity, such as the parameter a introduced by
Smith (1963), varies across types of families, and con-
sequently it varies across populations with different
types of families. A further problem is that, for common
mutations, a family may segregate mutations of more
than one gene. In this situation it is not clear which
gene(s) causes disease occurrence in the family.

Here we show that interpretation of p, independently
of the structures and phenotypes of the families in a
population, is possible only for diseases caused by mu-
tations of very low population frequency that do not
affect family size and whose penetrances satisfy certain
conditions. For diseases that do not satisfy these as-
sumptions, p varies across populations with different
types of families. Nevertheless, for any given popula-
tion, samples of families recruited according to a well-
defined ascertainment scheme could be used to appor-
tion responsibility among the relevant genes after they
have been identified and after the frequencies and pen-
etrances of their mutations have been estimated.

When the relevant genes are not known, their con-
tributions are often estimated on the basis of linkage
data, by means of Smith’s heterogeneity parameter a .
This parameter is commonly interpreted as the propor-
tion of families with linkage to (i.e., that segregate mu-
tations of) the gene of interest. Indeed, during the 54-
mo period between January 1, 1996, and June 30, 2000,
Smith’s heterogeneity analysis was used to analyze link-
age data reported by 64 papers (an average of more
than one paper per month) published in the Journal.
We show that heterogeneity assessed on the basis of
linkage data before the genes are known requires not
only the assumptions described above but also the
stronger assumption that all mutations of all relevant
genes be equally penetrant. It also requires correct spec-
ification of disease probabilities among those who carry
no mutation (the phenocopy rate). We use simulations
to demonstrate that heterogeneity estimates are sensitive
to misspecification of this rate, the values of which can-
not be deduced from linkage data. We also show that,
even when the assumptions are valid and the pene-
trances and phenocopy rate are correctly specified, com-
monly used methods for the estimation of p are based
on the wrong likelihood function and thus are biased
in the presence of phenocopies. We show how to correct
these estimates; but, nevertheless, we conclude that, for
the complex diseases facing geneticists today, assess-
ment of the relative contributions of multiple genes
should be postponed until the genes have been identified
and their frequencies and penetrances have been esti-
mated on the basis of population-based data.

Assumptions Needed for Interpretation of
Heterogeneity

We wish to quantify the probability that a family with
multiple cases of disease segregates a disease-predispos-
ing mutation of a gene of interest, hereafter called “gene
1.” We want to accommodate the possibility that, in-
stead, the family may either (a) segregate a mutation at
one of other unlinked disease genes, collectively called
“gene 2,” or (b) contain multiple cases of disease because
of other, nonhereditary reasons. In particular, we wish
to determine the probability that family i segregates a
mutation of gene 1, given the family’s pedigree structure
Si and phenotype Fi and given that the family is hered-
itary—that is, the family segregated a disease-predis-
posing mutation of some gene. (By a family’s pedigree
structure we mean its genealogy, in the sense used by
Thompson (1986, section 2.2). By a family’s phenotype
we mean the disease data for that family’s members,
where the data might be a binary indicator for disease
occurrence, a censored time to disease variable, or a
quantitative-trait measurement). Let Gk denote the event
that the family segregates a mutation of gene k, and let

p p P(G FF ,S ) (1)ki k i i

denote the probability of this event, given the family’s
structure and phenotype, . In particular, p1i isk p 1,2
the probability that the family segregates a mutation of
gene 1, given its structure and phenotype. In a linkage
study, p1i is the probability that the family’s alleles at
markers linked to gene 1 segregate with the disease. Let

g p P(G ∪ G FF ,S ) (2)i 1 2 i i

denote the probability that the disease in the family is
hereditary; values occur if, in some families, theg ! 1i

disease is due to nonhereditary factors or chance. We
wish to know the value of

p1i p P(G FG ∪ G ,F ,S ) , (3)1 1 2 i i
gi

which is the probability that the family segregates a mu-
tation of gene 1, given that the disease in the family is
hereditary. In general, all of these probabilities depend
on the family’s pedigree structure Si and phenotype Fi

in complex and largely unknown ways. The dependence
is simpler under the following assumptions.

ASSUMPTION A.1: The probabilities P(G1FSi) and
P(G2FSi depend on family structure Si only through the
number ni of founders.

This assumption would be violated if, for example,
mutations of one of the genes altered fertility (for further
discussion, see Janssen et al. 1997).
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ASSUMPTION A.2: The frequencies of predisposing
mutations of all genes are low.

Letting qk denote the frequency of mutations of gene
k, , we can express this assumption ask p 1,2 q K 1k

for . Assumption A.2 implies that terms of orderk p 1,2
, , and are negligible. Accordingly, we shall2 2q q q q1 2 1 2

ignore such terms whenever we use assumption A.2.
Assumption A.2 also implies that there is negligible
probability that a family segregates a mutation of more
than one gene. Thus we write the probability (2) as

. Substitution of this relation into equationg p p � pi 1i 2i

(3) shows that the probability that a family with he-
reditary disease segregates a mutation of gene 1 is

p p1i 1ip . (4)
g p � pi 1i 2i

Assumption A.2 also implies negligible probability
that more than one family founder carries a muta-
tion—or that a founder is homozygous for a mutation.
Thus, the probability that a founder carries a mutation
of gene k is 2qk. Using Assumption A.1, we can write
the probability that a family with structure Si segregates
a mutation of gene k as

niP(G FS ) p 1 � (1 � 2q ) p 2n q , k p 1,2 , (5)k i k i k

where the equal signs ignore terms of quadratic order
in q1 and q2. Probability (5) gives

P(G FS ) q1 i 1p . (6)
P(G FS ) q2 i 2

Assumption A.2, although plausible for rare Mendelian
diseases, is unlikely to hold for diseases caused by com-
mon low-penetrance polymorphisms.

To evaluate the relative contributions of genes 1 and
2 to the disease, we also need to consider their pene-
trances. To do so, we let r p [P(FFG ,S )]/[P(FFG ,S )]i i 1 i i 2 i

denote the probability of the ith family’s phenotype,
given that it segregates a mutation of gene 1, divided
by the corresponding probability, given that the family
segregates a mutation of gene 2. Then, from equation
(1), the relative probability that this family segregates
a mutation of gene 1 and not of gene 2 is

p P(G FF ,S ) r P(G FS )1i 1 i i i 1 ip p . (7)
p P(G FF ,S ) P(G FS )2i 2 i i 2 i

Substitution of the right side of relation (6) into equa-
tion (7) gives

p r q1i i 1p . (8)
p q2i 2

From equations (4) and (8) we find that the probability
that the family segregates a mutation of gene 1, given
that it is hereditary, is

p r q1i i 1p . (9)
g r q � qi i 1 2

In some applications it is reasonable to make the fol-
lowing assumption:

ASSUMPTION A.3: The phenotype probability ratios
are constant, independent of pedigree structurer { ri

and phenotype.
In this case, we can use equation (9) to define the

fraction of all hereditary families that segregate muta-
tions of gene 1, as

p rq1i 1p p p . (10)
g rq � qi 1 2

This equation shows that, when assumptions A.1–A.3
hold, the proportion p does not vary with the family
index i through the family’s structure or pheno-
type—and, thus, that values for p are comparable across
populations involving different types of families. Spe-
cifically, p represents the fraction of all heritable familial
aggregation due to the gene of interest. The value

corresponds to no heterogeneity (i.e., all familiesp p 1
whose disease is hereditary can be explained by gene
1), and the value corresponds to no etiologicalp p 0
role for gene 1. Moreover, within a population, esti-
mates of p are comparable across studies involving dif-
ferent types of families.

Multiplication of both sides of equation (10) by gi

gives

p p pg . (11)1i i

When for all family phenotypes and struc-g p 1i

tures—that is, when the disease in all multiple-case
families is hereditary—relation (11) becomes forp p p1i

all multiple-case families, regardless of structure or
phenotype.

When all the etiologically relevant genes and their
disease-causing mutations have been identified, popu-
lation-based studies can be used to estimate mutation
frequencies for the genes, and epidemiological studies
of disease risks in carriers can be used to estimate mu-
tation penetrances. Then assumptions A.1–A.3 would
not be needed, because these quantities would, for he-
reditary families, allow estimation of the proportion of
families, of any given structure and phenotype, that seg-
regate mutations of gene 1. They also would allow es-
timation of several other useful measures of the impact
that the gene has on the disease burden of the popu-
lation, such as (a) the fraction of all diseased cases that
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Table 1

Mean and SE of Estimates of p with Incorrect Specificationp̂
of the Phenocopy Rate f0

TRUE

PARAMETER

VALUE SPECIFIED f0
a

MEAN (SE) OF ,p̂
WHEN PROPORTION OF

TYPE I FAMILIES pb

0% 20% 80%

:p p .50
f p 00 .06 .69 (.05)c .71 (.05) .85 (.01)
f p .060 0 .37 (.02) .34 (.02) .24 (.03)

:p p .09
f p 00 .06 .12 (.05) .12 (.06) .13 (.01)
f p .060 0 .07 (.03) .07 (.03) .07 (.03)

a Based on 400 replications of data simulated for 4,000 families
with structures and phenotypes shown in figure 1, under the as-
sumptions of dominant, completely penetrant mutations of genes
1 and 2, which have frequencies of and eitherq p .003 q p1 2

or , and phenocopy rate f0 . The.003 (p p .5) q p .03 (p p .09)2

diallelic marker is linked to gene 1 at .v p .01
b As described in figure 1.
c 100 # SE.

Figure 1 Family structures and phenotypes used in simulations

carry its mutations and (b) the proportion of diseased
cases that could have been avoided if no one in the
population carried a mutation of the gene.

Problems in Estimating p from Linkage Data

The method that Smith (1963) used to estimate a, the
proportion of linked families, in a particular linkage
study was developed for diseases for which assumptions
A.1 and A.2 are reasonable and for which the disease
in all multiple-case families is hereditary (i.e., forg p 1i

all i). The method also makes, implicitly, an assumption
stronger than A.3, an assumption that we designate as
A.3′:

ASSUMPTION A.3′: The penetrances of mutations of
genes 1 and 2 are equal.

This assumption means that carriers of mutations of
genes 1 and 2 have either the same distribution of trait
values, for quantitative traits, or the same age-specific
incidence rates of disease, for qualitative traits. Clearly,
this restrictive assumption is unverifiable until the genes
have been identified.

Appendix A describes the fitting of parametric het-
erogeneity models to linkage data for qualitative dis-
eases that satisfy Assumptions A.1–A.3′. However even
when these assumptions are met, estimates of p are sen-
sitive to misspecification of the unknown phenocopy
rate. Specifically, when the phenocopy rate is overesti-
mated, too many families without linkage are attributed
to nonhereditary factors rather than to other genes, so
p is overestimated; conversely, when the phenocopy rate
is underestimated, then too many unlinked families are
attributed to other genes rather than to nongenetic fac-
tors, and p is underestimated.

To illustrate this sensitivity, we simulated linkage data
for families with the structures and phenotypes shown
in figure 1. Details of the simulations can be found in
Appendix C. The results are shown in table 1. As shown
in the first and third rows of table 1, the estimates of
p are too large when a true phenocopy rate of 0 is
misspecified as 6%. As noted above, this overestimation
occurs because some of the families that segregate mu-
tations of gene 2 are incorrectly attributed to nonher-
editary factors. Conversely, rows two and four of the

table show that too small a specified phenocopy rate
produces an underestimate of p. This occurs because
some of the families whose disease is due to nonhere-
ditary factors are incorrectly classified as families that
segregate mutations of gene 2. Table 1 also shows that
the magnitude of the bias increases with the increasing
proportion of families having only two typed, affected
members, because the disease in such families is more
likely to be due to nonhereditary factors. Other simu-
lations (results not shown) suggest that the estimates
are less sensitive to misspecification of the mutation fre-
quency q1.

Finally, we show in Appendix B that, even if as-
sumptions A.1, A.2, and A.3′ are valid and a positive
phenocopy rate is correctly specified, the estimate p̂H

for p, an estimate obtained by the software programs
HOMOG (Ott 1983, 1996) and GENEHUNTER
(Kruglyak et al. 1996), is based on the wrong likelihood
and therefore is biased. The bias occurs when there is
a positive probability that (a) a family segregates mu-
tations at genes other than gene 1 ( ) and (b) thep ! 1
disease in some families is due to nonhereditary factors
( for some i). Moreover, studies using familiesg ! 1i

whose phenotypes are more likely to have occurred by
chance will have greater bias.

Appendix B describes a procedure for that uses either
HOMOG or GENEHUNTER iteratively to obtain the
correct maximum-likelihood estimate . We used sim-p̂
ulations to evaluate the magnitude of the bias in andp̂H

to check the performance of the corrected estimate. We
generated the data by using assumptions A.1, A.2, and
A.3′ and analyzed them by using the correct values of
the penetrance parameters, the mutation frequency q1,
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Table 2

Mean and SE of Three Estimates of p, with
Correct Model Specification of the Phenocopy
Rate f0

TRUE

PARAMETER

VALUEa

MEAN (SE) FOR

THREE ESTIMATES OF p
WHEN PROPORTION OF

TYPE I FAMILIES pb

0% 20% 80%

:p p .50
:f p 00

p̂ .50 (.02) .50 (.02) .50 (.02)
:f p .060

p̂H .53 (.05) .54 (.06) .61 (.15)
p̂c .50 (.05) .50 (.06) .50 (.22)
p̂ .50 (.05) .50 (.06) .50 (.19)

:p p .09
:f p 00

p̂ .09 (.03) .09 (.03) .09 (.03)
:f p .060

p̂H .10 (.05) .11 (.07) .15 (.15)
p̂c .09 (.04) .09 (.05) .09 (.06)
p̂ .90 (.04) .09 (.05) .09 (.06)

a f0 is as defined in footnote “a” to table 1.
is the HOMOG/GENEHUNTER estimate (re-p̂H

ported as a in the literature) ( whenˆ ˆ ˆp p p p pH c

); is the corrected estimate; and is theˆ ˆf p 0 p p0 c

estimate obtained by maximization of likelihood
(A10).

b SE values shown (in parentheses) are 100 #
SE. Type I families are as described in figure 1.

and the recombination fraction v. Table 2 shows the
mean and 100 times the empirical standard error (SE)
of (a) the HOMOG estimate , (b) the iteratively cor-p̂H

rected estimate , and (c) the maximum-likelihood es-p̂c

timate . The first and fifth rows of table 2 show thep̂
results when the phenocopy rate is 0. In this case the
common estimate performs well. How-ˆ ˆ ˆp p p p pH c

ever, when the phenocopy rate is 6% the estimate isp̂H

too large. The upward bias is small when all of the
families have three typed, affected members, but it in-
creases as the number of families containing only two
such members increases.

In contrast, both the maximum-likelihood estimate
and the corrected estimate are unbiased. Thus, in prin-
ciple, it is possible, in the presence of a positive phe-
nocopy rate, to obtain unbiased estimates of p by it-
erative use of the HOMOG/GENEHUNTER software;
however, the strong assumptions and parametric het-
erogeneity–model specifications needed to obtain this
validity should discourage one from doing so.

Discussion

We have examined the problem of defining the propor-
tion p of all hereditary families that segregate mutations
of a particular gene of interest. We have shown that,
under certain assumptions, p is independent of the struc-
tures and phenotypes of the families in a particular pop-
ulation. The assumptions require that mutations of all
disease-causing genes have (1) no effect on family struc-
ture, (2) very low frequencies, and (3) penetrance ratios
that are independent of family structure and phenotype.
These assumptions, although plausible for rare Men-
delian diseases, are unlikely to hold for diseases caused
by common low-penetrance polymorphisms, and, for
these latter diseases, comparison of p across populations
with different types of families is problematic.

Evaluating heterogeneity from linkage data before the
genes have been identified requires not only the as-
sumptions described above but also the stronger as-
sumption of equal penetrance for all the etiologically
relevant genes. Even when all these assumptions are
met, there are problems. One problem is that estimates
of p that are based on linkage data are sensitive to
misspecification of the phenocopy rate. Another prob-
lem is that, even when the assumptions are met and the
phenocopy rate is correctly specified, the estimates of p
that are produced by HOMOG or GENEHUNTER are
biased when disease occurrence in some families is due
to nonhereditary factors (including chance). The bias is
small in linkage studies involving only families whose
disease is highly likely to be hereditary, but it increases
as the proportion of families whose disease is nonher-
editary increases. We have shown how to obtain con-
sistent estimates of p, either by maximizing directly an

appropriate likelihood function or by correcting itera-
tively the estimates produced by the software. Never-
theless, we do not recommend attempting to evaluate
genetic heterogeneity in a linkage analysis.

It might be argued that a heterogeneity analysis with
p (or a) treated merely as a meaningless nuisance pa-
rameter provides increased power to detect linkage.
However, we know of no evidence that a parametric
heterogeneity analysis has more power than a simple
nonparametric analysis when the data violate one or
more of the many assumptions needed for the former.
Thus, we suggest that linkage data be analyzed by non-
parametric methods. These methods might include sub-
group analyses when mutations of the gene of interest
are considered more likely to segregate in families with
certain attributes (e.g., early ages at onset, certain races
or ethnicities, or absence of other known disease-caus-
ing mutations).

In conclusion, we have shown that estimation of the
proportion of multiple-case families attributable to a
given gene before the gene has been identified and char-
acterized requires strong and generally unverifiable as-
sumptions about the behavior of all predisposing genes
in relation to the disease of interest. The restrictive na-
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ture of these assumptions, together with the sensitivity
of estimates to model misspecification, suggests that at-
tempts to quantify heterogeneity should be postponed
until the frequencies and penetrances of mutations in
the relevant genes have been characterized by use of
population-based data. Then, one can use this infor-
mation to evaluate the fraction of families, of any given
structure and phenotype, that segregate mutations of
the gene of interest. Indeed, the information can be used
to evaluate the gene’s impact on populations of indi-
viduals, rather than on populations of families; for ex-
ample, one can estimate the population attributable risk
for the gene, which is the fraction of the total disease
burden that would be prevented if no family member
carried its deleterious mutations (Miettinen 1974). This
measure is based on individuals rather than on fami-
lies—and thus, apart from its conceptual advantages, it
may have more public-health utility than does a family-
based measure.

Acknowledgments

This research was supported by National Institutes of Health
grant number R35 CA47448. The authors are grateful to Jo-
seph B. Keller and to the reviewers of earlier versions of the
manuscript, for helpful comments and suggestions.

Appendix A

Parametric Heterogeneity Models for Linkage Analysis

Suppose that we have typed a sample of N unrelated
families for markers in a small region containing gene
1 and that we are willing to make assumptions A.1, A.2,
and A.3′ for the data. We assume that each family cho-
sen for study is representative of all families in the pop-
ulation that have the same structure and phenotype.
(This assumption excludes model-based ascertainment
schemes, such as expansion of the pedigree until no more
affected members are found).

At position t in the region (a test locus for gene 1),
the likelihood of disease in the family is the probability
P(miFFi,Si) of its marker data mi, given its pedigree struc-
ture Si and phenotype Fi and given that t is the locus of
gene 1. This probability depends on the probability of
the family’s identity-by-descent (IBD) configuration at t,
given the family’s structure and disease phenotype. Let

index the Ji possible configurations for familyj p 1,...,Ji

i, and let

z p P(IBD p jFS ,F ) (A1)ij i i

denote the probability that the family has configuration
j for alleles of gene 1, given its structure and phenotype,

. We assume that the family’s phenotype Fi isj p 1,...,Ji

independent of its marker data mi, given the family’s
IBD configuration of alleles of gene 1. Then,

Ji

P(mFF ,S ) p P[mFIBD(t) p j,S ]z . (A2)�i i i i i ij
jp1

By Bayes’s rule,

g (t)ij
P[mFIBD(t) p j,S ] p P(mFS ) , (A3)i i i i rij

where is the probability thatg (t) p P[IBD(t) p jFm ,S ]ij i i

the family has IBD configuration j at locus t, given its
marker data, and rij is the marginal probability that the
family has IBD configuration j. Substitution of relation
(A3) into equation (A2) gives

Ji g (t)ij
P(mFF ,S ) p P(mFS ) z . (A4)�i i i i i ijrjp1 ij

Under the null hypothesis of no association between the
disease and gene 1, we have , and, from equationz p rij ij

(A4), we have . Thus, the family’sP(mFF ,S ) p P(mFS )i i i i i

LOD score at position t is the logarithm of the likelihood
ratio

Ji zP(mFF ,S ) iji i iL (t) p p g (t) . (A5)�i ijP(mFS ) rjp1i i ij

We now write the unknown probabilities zij of equation
(A1) as

∗z p p z � (1 � p )r , (A6)ij 1i ij 1i ij

where is the family’s proba-∗z p P(IBD p jFG ,F ,S )ij 1 i i

bility of configuration j for alleles of gene 1, given that
it segregates a mutation of this gene. Use of relation (11)
in equation (A6) gives

∗z p pg z � (1 � pg )r . (A7)ij i ij i ij

Substitution of the right side of likelihood (A7) for zij in
likelihood ratio (A5) gives the family’s LOD score as the
logarithm of

∗L (p,t) p pg L (t) � 1 � pg , (A8)i i i i

where

Ji ∗zij∗L (t) p g (t) . (A9)�i ij rjp1 ij

We wish to obtain joint estimates of p and the position
of gene 1 by maximizing the product of the terms (A8)
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over the N families. This task is more difficult when
for some or all of the sampled families, and, tog ! 1i

accomplish it, we must specify each in termsg p g (p)i i

of specified values for the frequencies and penetrances
of genotypes of gene 1 and the unknown parameter p
and then must estimate p and t as those values that
maximize the product of the likelihoods (A8):

N

∗[ ]L(p,t) p � pg (p)L (t) � 1 � pg (p) . (A10)i i i
ip1

Let denote the event that the disease in aG p G ∪ G1 2

family is hereditary, and let denote the event thatG̃
disease occurrence in a family is due to nonhereditary
factors (including chance). From Bayes’s rule, we have

g p P(GFF ,S )i i i

P(GFS )P(FFS ,G)i i ip . (A11)˜ ˜P(GFS )P(FFG,S ) � P(GFS )P(FFG,S )i i i i i i

Assumption A.2 and equation (11) imply that

˜P(GFS ) p 1 � P(GFS )i i

q1p 2n (q � q ) p 2n . (A12)i 1 2 i p

Here we have assumed that (and thus thatq 1 0 p 11

). Assumption A.3′ implies that0

P(FFG,S ) p P(FFG ,S ) . (A13)i i i 1 i

Substitution of probabilities (A12) and (A13) into equa-
tion (A11) gives

2n P(FFG ,S )i i 1 i
g (p) p , q 1 0 .i 1�1 ˜2n P(FFG ,S ) � (pq � 2n )P(FFG,S )i i 1 i 1 i i i

When , application of l’Hôpital’s rule givesq p 01

2n P(FFG ,S )i i 1 i
g (0) p .i �1 ˜2n P(FFG ,S ) � (q � 2n )P(FFG,S )i i 1 i 2 i i i

The quantities ni and are specified as part ofq 1 01

the input in parametric analysis, and the quantities
P(FiFG1,Si) and can be approximated in terms˜P(FFG,S )i i

of specified penetrances of genotypes of gene 1. Thus,
in a parametric heterogeneity model, the gi(p) values are
specified functions of the unknown parameter p. Note
that gi(1) is the probability that the family segregates a
mutation of gene 1 when there is no gene 2—that is,
when and . With assumptions A.1, A.2,q p 0 p p 12

and A.3′ and correct model specification, one can obtain
consistent and asymptotically efficient estimates byp̂
maximizing likelihood function (A10).

Appendix B

Correction of the HOMOG/GENEHUNTER Estimate
p̂H

For a given gene 1 locus t, the estimate for p,p̂H

produced by HOMOG and GENEHUNTER, maximizes
the function

N

(1)[ ]L (p,t) p � pL (t) � 1 � p , (B1)H i
ip1

where

(1) ∗L (t) p g (1)L (t) � 1 � g (1) (B2)i i i i

and the values are given by likelihood (A9). The∗L (t)i

logarithms of are the LOD scores produced by any(1)L (t)i

of several standard software programs for parametric
linkage analysis. Substitution of the likelihood (B2) into
the right side of equation (B1) gives

N

∗[ ]L (p,t) p � pg (1)L (t) � 1 � pg (1) . (B3)H i i i
ip1

The value that maximizes this function is report-p̂H

ed as “alpha” in all published studies that use either
HOMOG or GENEHUNTER to calculate heterogeneity
LOD scores.

Comparison of likelihood function (B3) versus the
correct likelihood function (A10) shows that the two are
equal if and only if —that is, if and only ifg (p) p g (1)i i

the ratio gi(p)/gi(1) is 1, On the basis ofi p 1,...,N.
equation (A14) this ratio is

�1 ˜g (p) 2n P(FFG ,S ) � (q � 2n )P(FFG,S )i i i 1 i 1 i i i
l (p) p p � 1 .i �1 ˜g (1) 2n P(FFG ,S ) � (pq � 2n )P(FFG,S )i i i 1 i 1 i i i

The inequality on the right holds because p in the de-
nominator has a positive coefficient and because 0 !

. Equation (B4) shows that if and only ifp � 1 l p 1i

either or (i.e., . In conclu-˜p p 1 P(FFG,S ) p 0 g p 1)i i i

sion, when linkage in some families is due to genes other
than gene 1 and in other families is due to nonhereditary
factors, then the estimate is based on the wrong like-p̂H

lihood function and therefore is biased.
One can use either HOMOG or GENEHUNTER it-

eratively to obtain the correct maximum-likelihood es-
timate , provided that the correct model is used top̂
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calculate the functions gi(7) of equation (A14) for the
family structures and phenotypes in the data. To describe
this iterative procedure, let denote the usual(1)ˆ ˆp p pH

estimate obtained by use, in either HOMOG or GENE-
HUNTER, of the values of likelihood (B2).(1)L (t)i

1. Given an estimate , compute(k)p̂

(k)ˆg (p )i(k�1) (1)[ ]L (t) p 1 � L (t) � 1 . (B5)i i
g (1)i

2. Use the values in place of in either(k�1) (1)L (t) L (t)i i

HOMOG or GENEHUNTER to obtain a new es-
timate for p.(k�1)p̂

Repeat steps 1 and 2 until successive estimates do not
change appreciably, and denote by the final estimate.p̂c

Notice that, if the phenocopy rate is specified as 0,
then for all i. In this case, equationg (p) p g (1) p 1i i

(B5) shows that , and the(k�1) (1)L (t) p L (t), k p 1,2,...i i

corrected estimate equals the original estimatep̂c

produced by the software.(1)ˆ ˆp p pH

Appendix C

Simulations

We simulated linkage data satisfying assumptions A.1–A.3′, using various true values of p. Specifically, for each
of 400 replications, we generated data at a single diallelic marker for nuclear families, each with twoN p 4,000
offspring and each with one affected and one unaffected parent, as shown in figure 1. (We used an unrealistically
large number of families to ensure a small SE in the estimates, so that their bias could be seen more clearly.) The
marker was assumed to be linked to gene 1, at recombination fraction , and to be unlinked to gene 2. We1v ! 2

assumed a binary disease outcome and chose N1 of the families to have phenotype (one offspring affected),F p I
with the remaining N2 families having phenotype (both offspring affected), as shown in figure 1. We assignedF p II
marker genotype AB to the affected parent and marker genotype BB to the unaffected parent, in each family. For
these parental genotypes, there are four possible pairs of offspring marker genotypes: AB,AB; AB,BB; BB,AB; and
BB,BB. We generated one of these pairs for each family of type , as a multinomial variate with probabilities�, � p 1,2

P(AB,ABFparents’ markers, F ,v) p P(BB,BBFparents’ markers, F ,v)� �

1
p J (v) ,�2

and

P(AB,BBFparents’ markers, F ,v) p P(BB,ABFparents’ markers, F ,v)� �

1
p [1 � J (v)] .�2

Here the probabilities J1(v) and J2(v) are calculated under the assumption of a dominant model with f p f p2 1

and with specified values for the phenocopy rate f0 and for the mutation frequencies—q1 and q2—of the two1
genes. Specifically,

12 2 2q f [v � (1 � v) ] � 2q v(1 � v) � q (1 � f ) � f (1 � 4q � 4q )1 0 1 2 0 0 1 22
J (v) p ,1 2(q � q )(1 � f ) � 2f (1 � 4q � 4q )1 2 0 0 1 2

and

12 2 2 2 3q (1 � f )[v � (1 � v) ] � 4q f v(1 � v) � q (1 � f ) � f (1 � 4q � 4q )1 0 1 0 2 0 0 1 22
J (v) p .2 2 3(q � q )(1 � f ) � 2f (1 � 4q � 4q )1 2 0 0 1 2

The estimates were obtained by maximization of the likelihood (A10), with , when family i wasp̂ g (p) p g (p)i �

of type , and was approximated by . Here, and�1 2�, � p 1,2 g (p) g (p) p 4/[4 � (pq � 4)c ] c p 8f /[1 � f ]� � 1 � 1 0 0

. These expressions are approximate because they use the penetrance of the normal genotype at3 2c p 8f /[1 � f ]1 0 0
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gene 1 (which represents disease risk due not only to nonhereditary factors but also to the rare mutations of gene
2) to calculate the phenotype probabilities of families whose disease is due only to nonhereditary factors.˜P(FFG,S )i i
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